Česká baterie ze slané vody slibuje revoluci ve skladování energie. Prototyp podává oslnivé výkony

Bezpečná a levná baterie na bázi slané vody, zinku a uhlíku slibuje revoluci ve skladování energie. Prototyp po pěti stech nabíjecích cyklech nevykazuje skoro žádný pokles kapacity.

Pavel Baroch

17. 9. 2022

Čeští vědci jsou na cestě k levnému a bezpečnému skladování energie. Vyvíjejí baterii na bázi slané vody, která by mohla pomoci s řešením jedné z nejdůležitějších otázek současné energetiky, kdy není problémem energii vyrobit, ale efektivně ji uskladnit, případně transportovat. Na unikátním řešení pracují odborníci ze dvou institucí Akademie věd ČR: Fyzikálního ústavu a Ústavu fyzikální chemie J. Heyrovského. Jejich vodná baterie je zatím v prototypu, ale v budoucnu by mohla najít uplatnění například ve fotovoltaice, která v poslední době zažívá kvůli energetické krizi nebývalý rozmach.

Základ převratného objevu se vedle slané vody skládá ještě ze zinku a grafitu, což jsou poměrně levné a snadno dostupné materiály. Podle vědců to ale neznamená, že by si pokročilé zařízení na ukládání energie mohl kdekdo sestavit doma v kuchyni. Za vytvořením jejich prototypu se skrývají roky práce a výzkumu. Příběh vodné baterie nezačíná vidinou nového technologického řešení, ale základním výzkumem dvourozměrných materiálů – v tomto případě grafenu.



Odborníci tento v současnosti intenzivně studovaný materiál obvykle prezentují jako tenkou vrstvu grafitu (uhlíku) o šířce jednoho atomu. Existuje ovšem více způsobů uspořádání grafenu – například trojrozměrný. Jestliže jednotlivé, jeden atom široké vrstvy vědci pečlivě naskládají na sebe, interakce mezi nimi změní vlastnosti celého materiálu. Výzkum hlavního autora nové baterie Jiřího Červenky z Fyzikálního ústavu se ale soustředí ještě na další, odlišný typ hmoty, a sice na poddruh trojrozměrného grafenu, který si specifické vlastnosti jednoatomární vrstvy zachovává. „Náš materiál svou porézní strukturou trochu připomíná houbu, a protože jsou mezi jeho atomy velké rozestupy, má nebývale velký povrch, na kterém mohou probíhat reakce,“ vysvětlil fyzik.

Jak ale tento porézní grafen souvisí se zdroji energie? Každá moderní baterie je založena na elektrodách, na nichž se odehrávají elektrochemické reakce. Podle vědců se tak logicky hledají pro jejich výrobu materiály s co největším účinným povrchem, aby na něm mohlo probíhat co nejvíce reakcí najednou. Čím větší totiž povrch je, tím vyšší má baterie obvykle kapacitu. A tak se před pěti lety, když vědci začali uvažovat o možnostech využít tyto druhy materiálů při stavbě pokročilých baterií, porézní grafen ukázal jako ideální kandidát.

Objev postavený na vodě

Vedle elektrod se baterie skládají také z elektrolytu – kapaliny, která díky v ní obsaženým iontům vede mezi jednotlivými elektrodami proud. Při vývoji nových úložišť energie výzkumníci testují různé typy materiálů a roztoků, dokud nenaleznou tu správnou kombinaci. Takový je obvyklý postup. Vědci z týmu Jiřího Červenky ale zvolili poněkud odlišnou strategii a podívali se na problém z obecnějšího hlediska. Nejprve se zamysleli nad budoucností baterií. Jaké nároky by měly splňovat zdroje energie zítřka? Jaké by měly mít vlastnosti?

A odpověděli si: Měly by být ekonomické, ekologicky šetrné, bezpečné a pokud možno vyrobené z přírodních zdrojů. Technologie na nich postavená by tak měla zůstat levná, dostupná a odbouratelná i v případě, že by měla úspěch a začala se masově používat. Do následného „výběrového řízení“ tak zařadili pouze takové materiály, které tyto požadavky splňují. Výhercem výběru se stala voda, přesněji její roztok s velkým množstvím chaotropní soli chloristanu zinečnatého. Chaotropní sůl svým působením narušuje strukturu vody a díky tomu poskytuje baterie vyšší napětí.

Kolik vám vydělají solární panely a jak rychle je můžete mít na střeše vašeho domu?

„Uvažovali jsme nad jinými druhy chemických sloučenin, ale nakonec se ukázalo, že chloristany představují v odvětví baterií neprobádanou půdu. Takže jsme se zaměřili právě na ně,“ poznamenal Otakar Frank z Ústavu fyzikální chemie J. Heyrovského, jehož tým se zaměřil na výzkum elektrochemických procesů mezi elektrolytem a grafenem. Vědci sice zpočátku experimentovali také s jinými typy solí, například na bázi hliníku, ale z nich vytvořené roztoky byly velmi kyselé a korozivní, takže se v nich elektrody rychle rozkládaly. Nalezením optimální kombinace grafenových elektrod a solného roztoku se vědcům nakonec podařilo odstranit nejzásadnější nevýhodu vodných baterií, která bránila jejich rozmachu v minulosti: nízkou kapacitu.

Využití ve fotovoltaice

Kapacita se u baterií určuje poměrem k jejich hmotnosti, a proto je její přesnější stanovení u tak malého prototypu, jako je právě vodná baterie, jen velmi obtížné. Výsledky testů ale doposud vycházejí slibně, kapacita je v mnoha ohledech srovnatelná s nikl-metal hydridovými bateriemi, které si můžeme pořídit v obchodě v podobě známých „tužkovek“. Navíc se potvrdilo, že baterie má velmi dobrou výdrž. Po pěti stech cyklech nabití a vybití její výkonnost nijak citelně neklesá.

Výzkumníci uvedli, že se v jistém smyslu vrací jejich objev k samotným kořenům skladování energie. Historicky první baterie, kterou vyrobil Alessandro Volta již na konci 18. století, totiž fungovala také na bázi vody. Výzkum těchto technologií však zažívá boom až v posledních deseti letech. Pohání ho překotný rozvoj mobility, která klade čím dál striktnější požadavky na výkon a zároveň upřednostňuje dřív opomíjenou bezpečnost.

Dnešní typické lithium-iontové baterie, které vedle notebooků a jiné přenosné elektroniky pohánějí také elektrokola, obsahují velmi hořlavé organické elektrolyty a sloučeniny lithia a mohou v extrémních případech explodovat. Vodná baterie by tak mohla vyhovět novým nárokům, které na tyto technologie klademe: je výkonná, ekologická a nevybuchuje. Stejně jako každý jiný typ baterií má však i ona řadu omezení. To nejvýznamnější pramení z faktu, že se nehodí pro malá a mobilní zařízení. Množství energie, které baterie dokáže uskladnit, je v poměru k její hmotnosti stále relativně malé. Tam, kde rozhoduje hmotnost, například v našich chytrých telefonech, hodinkách či elektromobilech, nová vodná baterie využití nenajde. Odlišná je však situace v případech, kde hmotnost podstatná není a zásadním požadavkem je naopak udržitelnost, co nejvyšší kapacita a co nejnižší cena. Odvětvím, kde by objev českých vědců mohl najít ideální uplatnění zazářit, by tak mohlo být skladování energie u fotovoltaických elektráren či ve stacionárních bateriových systémech.

Velký potenciál

Vědci upozornili, že vývoj bezpečné a levné baterie je stále na samém počátku. Slibný prototyp naznačuje cestu, přechod do komerčního prostředí je však dlouhý a náročný. „Jako vědci jsme naši baterii vyrobili poněkud ‚na koleni‘. Do budoucna tedy chceme otestovat, jak by se dala vyrábět průmyslově a zda si udrží své ekologické a ekonomické kvality,“ uvedl Jiří Červenka z Fyzikálního ústavu. Jako určitá překážka se může jevit i zmíněný porézní grafen. V laboratoři jej odborníci pro výzkum připraví snadno, ovšem mechanismy pro komerční produkci v současnosti neexistují. Alespoň ne v kvalitě, jakou dokážou syntetizovat ve Fyzikálním ústavu. Taková překážka ale podle vědců není nepřekonatelná. Stejně jako vývoj možností, jak novou baterii přivést do komerční výroby. Podle Otakara Franka z Ústavu fyzikální chemie J. Heyrovského je například možné, že se jeho týmu podaří najít další a vhodnější materiály. „Kombinací je nepřeberné množství, ale jejich cena, stabilita a bezpečnost jsou stále prioritou,“ řekl Frank.

Potenciál dnes již patentované technologie je velký a mnohé firmy o ni už projevily zájem. „Šlo především o společnosti, které využívají baterie jako záložní zdroj k solárním článkům nebo k zabezpečení svých výrobních procesů,“ přiblížil Jiří Červenka. „V té fázi, kdy bychom jim mohli hotovou technologii nabídnout, ale ještě nejsme.“ Odezva firem podle něj ale jasně ukazuje, jak velký je po podobných řešeních hlad a poptávka. Světové prvenství ve výzkumu a produkci těchto technologií drží Čína. V Evropě vyrábí baterie například Polsko nebo Německo. Objevitelé české vodné baterie by si přáli, aby jejich vynález zůstal v českých rukách, a rádi by proto jeho výrobu přesunuli do tuzemské firmy.

Vědci také upozornili na podle nich dlouho opomíjený fakt: kdo má energii v zásobě, je lépe připravený na budoucnost. „Efektivní nakládání s energií je jednou z cest, jak můžeme zlepšit nejen naše životní prostředí,“ řekl Otakar Frank. „Využívání malých lokalizovaných zdrojů a ukládání přímo na místě je přece smysluplnější než velká množství energie přepravovat na značné vzdálenosti, už kvůli obrovským nárokům na přenosovou soustavu.“

Autor: Pavel Baroch

Foto: Akademie věd České republiky